On biclique coverings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On biclique coverings

It was proved by Fronček, Jerebic, Klavžar, and Kovář that if a complete bipartite graph Kn,n with a perfect matching removed can be covered by k bicliques, then n ≤ ( k b k 2 c ) . We give a slightly simplified proof and we show that the result is tight. Moreover we use the result to prove analogous bounds for coverings of some other classes of graphs by bicliques. ∗Supported by the University...

متن کامل

Biclique Coverings and the Chromatic Number

Consider a graph G with chromatic number k and a collection of complete bipartite graphs, or bicliques, that cover the edges of G. We prove the following two results: • If the bicliques partition the edges of G, then their number is at least 2 √ log2 . This is the first improvement of the easy lower bound of log2 k, while the Alon-Saks-Seymour conjecture states that this can be improved to k − ...

متن کامل

Biclique coverings, rectifier networks and the cost of $\varepsilon$-removal

We relate two complexity notions of bipartite graphs: the minimal weight biclique covering number Cov(G) and the minimal rectifier network size Rect(G) of a bipartite graph G. We show that there exist graphs with Cov(G) ≥ Rect(G). As a corollary, we establish that there exist nondeterministic finite automata (NFAs) with εtransitions, having n transitions total such that the smallest equivalent ...

متن کامل

Strong Isometric Dimension, Biclique Coverings, and Sperner's Theorem

The strong isometric dimension of a graphG is the least number k such that G isometrically embeds into the strong product of k paths. Using Sperner’s Theorem, the strong isometric dimension of the Hamming graphs K2 Kn is determined.

متن کامل

Biclique graphs and biclique matrices

A biclique of a graph G is a maximal induced complete bipartite subgraph of G. Given a graph G, the biclique matrix of G is a {0,1,−1} matrix having one row for each biclique and one column for each vertex of G, and such that a pair of 1, −1 entries in a same row corresponds exactly to adjacent vertices in the corresponding biclique. We describe a characterization of biclique matrices, in simil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2008

ISSN: 0012-365X

DOI: 10.1016/j.disc.2006.11.045